Explicit Lower Bounds on the Modular Degree of an Elliptic Curve

نویسنده

  • MARK WATKINS
چکیده

We give explicit lower bounds on the modular degree of a rational elliptic curve. The technique is via a convolution-type formula involving the symmetric-square L-function, for which an analogue of “no Siegel zeros” is known due to a result of Goldfeld, Hoffstein, and Lieman; our main task is to determine an explicit constant for their bound. Combined with an easy bound on the Faltings height in terms of the discriminant, this gives an explicit lower bound on the modular degree that is N logN √ log logN where N is the conductor. This improves previous explicit bounds that were linear in N . In an appendix, we calculate the Euler factors and local conductors for symmetric power L-functions of an elliptic curve, a topic of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the degree of modular parametrizations over function fields

Let E be an elliptic curve over FqðTÞ with conductor N N: Let Y : X0ðNÞ-E be the modular parametrization by the Drinfeld modular curve of level N: Assuming that E is a strong Weil curve we prove upper and lower bounds on deg Y: These bounds are the analogs of well-known (partially conjectural) bounds in the case of rational numbers. r 2002 Elsevier Science (USA). All rights reserved.

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Computing the Degree of the Modular Parametrization of a Modular Elliptic Curve

The Weil-Taniyama conjecture states that every elliptic curve E/Q of conductor N can be parametrized by modular functions for the congruence subgroup T0(N) of the modular group r = F5L(2,Z). Equivalently, there is a nonconstant map ip from the modular curve Xq(N) to E . We present here a method of computing the degree of such a map for arbitrary N. Our method, which works for all subgroups ...

متن کامل

Modular Parametrizations of Elliptic Curves

Many — conjecturally all — elliptic curves E/Q have a "modular parametrization," i.e. for some N there is a map tp from the modular curve X0(N) to E such that the pull-back of a holomorphic differential on E is a modular form (newform) / of weight 2 and level N. We describe an algorithm for computing the degree of ip as a branched covering, discuss the relationship of this degree to the "congru...

متن کامل

Computing S-Integral Points on Elliptic Curves

1. Introduction. By a famous theorem of Siegel [S], the number of integral points on an elliptic curve E over an algebraic number field K is finite. A conjecture of Lang and Demyanenko (see [L3], p. 140) states that, for a quasiminimal model of E over K, this number is bounded by a constant depending only on the rank of E over K and on K (see also [HSi], [Zi4]). This conjecture was proved by Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004